PTHrP regulates angiogenesis and bone resorption via VEGF expression.

نویسندگان

  • Sachiko Isowa
  • Tsuyoshi Shimo
  • Soichiro Ibaragi
  • Naito Kurio
  • Tatsuo Okui
  • Kiminori Matsubara
  • Nur Mohammad Monsur Hassan
  • Koji Kishimoto
  • Akira Sasaki
چکیده

BACKGROUND Parathyroid hormone-related protein (PTHrP) is a key regulator of osteolytic metastasis of breast cancer (BC) cells, but its targets and mechanisms of action are not fully understood. This study investigated whether/how PTHrP (1-34) signaling regulates expression of vascular endothelial growth factor (VEGF) produced by BC cells. MATERIALS AND METHODS A mouse model of bone metastasis was prepared by inoculating mice with tumour cell suspensions of the human BC cell line MDA-MB-231 via the left cardiac ventricle. VEGF expression was examined by Western blot and real-time RT-PCR analysis, as well as by confocal microscopy in the bone microenvironment. RESULTS PTHrP was expressed in cancer cells producing PTH/PTHrP receptor and VEGF that had invaded the bone marrow, and PTHrP was up-regulated VEGF in MDA-MB-231 in vitro. The culture medium conditioned by PTHrP-treated MDA-MB-231 cells stimulated angiogenesis and osteoclastogenesis compared with control medium, giving a response that was inhibited by VEGF-neutralizing antibody treatment. Inhibition of protein kinase C (PKC) prevented PTHrP-induced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and PTHrP-induced VEGF expression. CONCLUSION PTHrP plays an important role in modulating the angiogenic and bone osteolytic actions of VEGF through PKC-dependent activation of an ERK1/2 and p38 signaling pathway during bone metastasis by breast cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-terminal parathyroid hormone-related protein increases vascular endothelial growth factor in human osteoblastic cells.

The N-terminal region of parathyroid hormone (PTH) and PTH-related protein (PTHrP) interacts with a common PTH/PTHrP receptor in osteoblasts. These cells synthesize PTHrP, but its role in bone turnover is unclear. Intermittent treatment with N-terminal PTHrP or PTH stimulates bone growth in vivo, possibly by increasing local bone factors. In addition, C-terminal PTHrP (107-139), which does not ...

متن کامل

Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression.

Hedgehog (Hh) signaling is required for osteoblast differentiation from mesenchymal progenitors during endochondral bone formation. However, the role of Hh signaling in differentiated osteoblasts during adult bone homeostasis remains to be elucidated. We found that in the postnatal bone, Hh signaling activity was progressively reduced as osteoblasts mature. Upregulating Hh signaling selectively...

متن کامل

MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF)

Objective(s): To investigate the effect of miR-103 on the angiogenesis of ischemic stroke rats via targeting vascular endothelial growth factor (VEGF) at the molecular level. Materials and Methods: Rat models had received the middle cerebral artery occlusion (MCAO) or sham operation before grouping, and cell models of oxygen-glucose deprivation (OGD) were performed. FITC-dextran, matrigel, and ...

متن کامل

Mechanical stress up-regulates RANKL expression via the VEGF autocrine pathway in osteoblastic MC3T3-E1 cells.

Although it has been reported that vascular endothelial growth factor (VEGF) promotes not only angiogenesis but also osteoclast and osteoblast differentiation, few reports exist regarding VEGF/VEGF receptor (VEGFR) signaling in osteoblasts, which regulate osteoclast differentiation and generate VEGF. This study examined the expression of the bone remodeling factor VEGF-A and its receptors, VEGF...

متن کامل

Triiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts

Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.Materials and Methods: The subchondral bone specimens were obtained from O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anticancer research

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2010